6,195 research outputs found

    Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise

    Full text link
    This study presents the results of a series of simulation experiments that evaluate and compare four different manifold alignment methods under the influence of noise. The data was created by simulating the dynamics of two slightly different double pendulums in three-dimensional space. The method of semi-supervised feature-level manifold alignment using global distance resulted in the most convincing visualisations. However, the semi-supervised feature-level local alignment methods resulted in smaller alignment errors. These local alignment methods were also more robust to noise and faster than the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the final version will be added to the preprint, as soon as it is availabl

    Single Image Super-Resolution Using Lightweight CNN with Maxout Units

    Full text link
    Rectified linear units (ReLU) are well-known to be helpful in obtaining faster convergence and thus higher performance for many deep-learning-based applications. However, networks with ReLU tend to perform poorly when the number of filter parameters is constrained to a small number. To overcome it, in this paper, we propose a novel network utilizing maxout units (MU), and show its effectiveness on super-resolution (SR) applications. In general, the MU has been known to make the filter sizes doubled in generating the feature maps of the same sizes in classification problems. In this paper, we first reveal that the MU can even make the filter sizes halved in restoration problems thus leading to compaction of the network sizes. To show this, our SR network is designed without increasing the filter sizes with MU, which outperforms the state of the art SR methods with a smaller number of filter parameters. To the best of our knowledge, we are the first to incorporate MU into SR applications and show promising performance results. In MU, feature maps from a previous convolutional layer are divided into two parts along channels, which are then compared element-wise and only their max values are passed to a next layer. Along with some interesting properties of MU to be analyzed, we further investigate other variants of MU and their effects. In addition, while ReLU have a trouble for learning in networks with a very small number of convolutional filter parameters, MU do not. For SR applications, our MU-based network reconstructs high-resolution images with comparable quality compared to previous deep-learning-based SR methods, with lower filter parameters.Comment: ACCV201

    A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties. The Connectivity Map was a novel concept and innovative tool first introduced by Lamb et al to connect small molecules, genes, and diseases using genomic signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the Connectivity Map had some limitations, particularly there was no effective safeguard against false connections if the observed connections were considered on an individual-by-individual basis. Further when several connections to the same small-molecule compound were viewed as a set, the implicit null hypothesis tested was not the most relevant one for the discovery of real connections. Here we propose a simple and robust method for constructing the reference gene-expression profiles and a new connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with the two example gene-signatures (HDAC inhibitors and Estrogens) used by Lamb et al and also a new gene signature of immunosuppressive drugs. Our testing with this new method shows that it achieves a higher level of specificity and sensitivity than the original method. For example, our method successfully identified raloxifene and tamoxifen as having significant anti-estrogen effects, while Lamb et al's Connectivity Map failed to identify these. With these properties our new method has potential use in drug development for the recognition of pharmacological and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a ZIP fil

    Truncated Schwinger-Dyson Equations and Gauge Covariance in QED3

    Full text link
    We study the Landau-Khalatnikov-Fradkin transformations (LKFT) in momentum space for the dynamically generated mass function in QED3. Starting from the Landau gauge results in the rainbow approximation, we construct solutions in other covariant gauges. We confirm that the chiral condensate is gauge invariant as the structure of the LKFT predicts. We also check that the gauge dependence of the constituent fermion mass is considerably reduced as compared to the one obtained directly by solving SDE.Comment: 17 pages, 11 figures. v3. Improved and Expanded. To appear in Few Body System

    A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex

    Get PDF
    Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in "at home" solutions remineralize the tubules inside by concentrating saliva ingredients. An "in-office" option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid-iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity.111310Ysciescopu

    Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder

    Get PDF
    Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD

    Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues

    Get PDF
    Smart grid (SG) networks are newly upgraded networks of connected objects that greatly improve reliability, efficiency and sustainability of the traditional energy infrastructure. In this respect, the smart metering infrastructure (SMI) plays an important role in controlling, monitoring and managing multiple domains in the SG. Despite the salient features of SMI, security and privacy issues have been under debate because of the large number of heterogeneous devices that are anticipated to be coordinated through public communication networks. This survey paper shows a brief overview of real cyber attack incidents in traditional energy networks and those targeting the smart metering network. Specifically, we present a threat taxonomy considering: (i) threats in system-level security, (ii) threats and/or theft of services, and (iii) threats to privacy. Based on the presented threats, we derive a set of security and privacy requirements for SG metering networks. Furthermore, we discuss various schemes that have been proposed to address these threats, considering the pros and cons of each. Finally, we investigate the open research issues to shed new light on future research directions in smart grid metering networks

    Learning Control of Quantum Systems

    Full text link
    This paper provides a brief introduction to learning control of quantum systems. In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems, evolutionary computation for learning control of quantum systems, learning-based quantum robust control, and reinforcement learning for quantum control.Comment: 9 page

    Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors

    Full text link
    There has been an intense search in recent years for long-lived spin-polarized carriers for spintronic and quantum-computing devices. Here we report that spin polarized quasi-particles in superconducting aluminum layers have surprisingly long spin-lifetimes, nearly a million times longer than in their normal state. The lifetime is determined from the suppression of the aluminum's superconductivity resulting from the accumulation of spin polarized carriers in the aluminum layer using tunnel spin injectors. A Hanle effect, observed in the presence of small in-plane orthogonal fields, is shown to be quantitatively consistent with the presence of long-lived spin polarized quasi-particles. Our experiments show that the superconducting state can be significantly modified by small electric currents, much smaller than the critical current, which is potentially useful for devices involving superconducting qubits

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure
    corecore